Approximating the fixed linear crossing number
نویسندگان
چکیده
We present a randomized polynomial-time approximation algorithm for the fixed linear crossing number problem (FLCNP). In this problem, the vertices of a graph are placed in a fixed order along a horizontal “node line” in the plane, each edge is drawn as an arc in one of the two half-planes (pages), and the objective is to minimize the number of edge crossings. FLCNP is NP-hard, and no previous polynomial-time approximation algorithms are known. We show that the problem can be generalized to k pages and transformed to the maximum k-cut problem which admits a randomized polynomial-time approximation. For the 2-page case, our approach leads to a randomized polynomial time 0.878 + 0.122ρ approximation algorithm for FLCNP, where ρ is the ratio of the number of conflicting pairs (pairs of edges that cross if drawn in the same page) to the crossing number. We further investigate this performance ratio on the random graph family Gn,1/2, where each edge of the complete graph Kn occurs with probability 1/2. We show that a longstanding conjecture for the crossing number of Kn implies that with probability at least 1−4e−λ2 , the expected performance bound of the algorithm on a random graph from Gn,1/2 is 1.366 + O(λ/n). A series of experiments is performed to compare the algorithm against two other leading heuristics on a set of test graphs. The results indicate that the randomized algorithm yields near-optimal solutions and outperforms the other heuristics overall.
منابع مشابه
New iteration process for approximating fixed points in Banach spaces
The object of this paper is to present a new iteration process. We will show that our process is faster than the known recent iterative schemes. We discuss stability results of our iteration and prove some results in the context of uniformly convex Banach space for Suzuki generalized nonexpansive mappings. We also present a numerical example for proving the rate of convergence of our res...
متن کاملApproximating Spanning Trees with Low Crossing Number
We present a linear programming based algorithm for computing a spanning tree T of a set P of n points in IR, such that its crossing number is O(min(t log n, n1−1/d)), where t the minimum crossing number of any spanning tree of P . This is the first guaranteed approximation algorithm for this problem. We provide a similar approximation algorithm for the more general settings of building a spann...
متن کاملExplicit Bounds for Approximation Rates of Boundary Crossing Probabilities for the Wiener Process
We give explicit upper bounds for convergence rates when approximating both oneand two-sided general curvilinear boundary crossing probabilities for the Wiener process by similar probabilities for close boundaries of simpler form, for which computation of the boundary crossing probabilities is feasible. In particular, we partially generalize and improve results obtained by Pötzelberger and Wang...
متن کاملApproximating fixed points of nonexpansive mappings and solving systems of variational inequalities
A new approximation method for the set of common fixed points of nonexpansive mappings and the set of solutions of systems of variational inequalities is introduced and studied. Moreover, we apply our main result to obtain strong convergence theorem to a common fixed point of a nonexpannsive mapping and solutions of a system of variational inequalities of an inverse strongly mono...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 155 شماره
صفحات -
تاریخ انتشار 2007